
GPU-accelerated Fast Fourier Transform for
Interactive Visualization of Audio Signals

Michele Rullo

25/02/2013

2

Abstract

Our modern fast-paced world is mostly being driven by the new computer
technologies. With the advent of internet, the most brilliant human artifact
of our times, and with the wide distribution of personal computers, Computer
Science is becoming increasingly important. This thesis aims to be a "gate"
toward the CUDA technology, presenting an experimental project which will
introduce the reader to Parallel Computing Programming philosophy.
This work aims to progressively discover the potential of parallel computing
through concrete examples, quoting official documents and presenting the
software project with an algorithm-oriented explanation, guiding the reader
to the final practical goal: draw a 3D image of an audio stream, using
CUDA technology.

3

4

Acknowledgements

To my brother, Pierpaolo, who is the center of my universe.
To my parents, who constantly believe in me.
To my relatives, especially Franco, who have always supported me.
To Paolo, Enrico, Andrea and Pasqualino who have completely changed my
life.
I wish to acknowledge the professor Marco Fratarcangeli, who gave me many
reason to make my dream become a concrete objective.

6

Contents

1 Introduction 9
1.1 Cuda & General Purpose Parallel Programming 9

1.1.1 GPU’s and General Purpose Parallel Programming . . 9
1.1.2 What is CUDA . 10
1.1.3 Why CUDA . 12
1.1.4 Trade-Off . 12

1.2 Concrete Applications of CUDA technology 13
1.3 Example: Summing Vectors 13

2 Thesis Argument 17
2.1 Introduction . 17

2.1.1 Reference Example . 17
2.1.2 Tools Used . 18
2.1.3 The Algorithm . 18
2.1.4 Code Organization . 19

2.2 The Code . 19
2.2.1 Preliminary Phase . 19
2.2.2 CUDA Phase . 21

2.3 Demonstration . 27
2.3.1 Low Frequencies Sample 27
2.3.2 Constant Frequencies Spectrum Sample 28
2.3.3 Siren Audio Sample . 31

3 Practical Applications 33
3.1 Stage Lighting System . 33

7

8 CONTENTS

Chapter 1

Introduction

1.1 Cuda & General Purpose Parallel Program-
ming

"Because of various fundamental limitations in the fabrication
of integrated circuits, it is no longer feasible to rely on upward-
spiraling processor clock speeds as a means for extracting addi-
tional power from existing architectures. Because of power and
heat restrictions as well as a rapidly approaching physical limit to
transistor size, researchers and manufacturers have begun to look
elsewhere." [2].

CUDA is the answer from NVIDIA to face the new era of computer’s tech-
nology. Since we have reaching the physical limits of processors, the new
technologies are focusing on Parallelism among different Cores. The rea-
son is simple: if we can’t rely anymore on the processing velocity of a
single entity, why don’t we use more entities and make them work
in cooperation? It is now common to see how we can find Multi-Core
processors and/or GPU with thousands of cores built inside in a personal
computer. With no doubts we can tell how parallelism will be play an im-
portant role in future.

1.1.1 GPU’s and General Purpose Parallel Program-
ming

In order to understand what is the revolution driven by NVIDIA, it is nec-
essary to talk about the early days of gpu’s. With the evolution of Personal

9

10 CHAPTER 1. INTRODUCTION

Computers, softwares began to require always more resources, especially in
the videogame industry:

"By the mid-1990s, the demand for consumer applications em-
ploying 3D graphics had escalated rapidly, setting the stage for
two fairly significant developments. First, the release of immer-
sive, first-person games such as Doom, Duke Nukem 3D, and
Quake helped ignite a quest to create progressively more realistic
3D environments for PC gaming." [2]

In order to improve the graphics capability of a personal computer, the ne-
cessity was to develop a new technology which allowed to separate data-
processing from graphical information-processing: it was the dawn of Graph-
ical Processing Units.
Mixing the capabilities of a CPU, which can only process single instructions
at a time (serial), and of a GPU, which can process multiple instructions
at a time (parallelism), PC could finally overcome important limits. This
hardware "separations" allowed software houses to develop new softwares
and videogames with better performance, extending, in a wide way, their
horizons.
Later, GPU’s parallelization capability began to seize the interest of re-
searchers, who started to assess the real potential of this technology, looking
for a way to exploit it for general purpose computation, that is, the idea
of using GPU’s capabilities in order to accomplish every kind of
programming tasks, not only for graphical computation. The basic
idea was to extend the original API’s (Application Programming Interface)
for graphics device. The original API’s, in fact, were very limited, since they
were constrained to work only for graphical purposes.

A first "trick" adopted to overcome these limits was to make GPU per-
forming non-rendering tasks by making those tasks appear as if they were a
standard rendering. This type of gpu-programming was a smart idea, but it
showed its limits very soon, as it was too restrictive for programmers.

1.1.2 What is CUDA

"In November 2006, NVIDIA unveiled the industry’s first DirectX
10 GPU, the GeForce 8800 GTX. The GeForce 8800 GTX was
also the first GPU to be built with NVIDIA’s CUDA Architec-
ture. This architecture included several new components designed
strictly for GPU computing and aimed to alleviate many of the

1.1. CUDA & GENERAL PURPOSE PARALLEL PROGRAMMING 11

Figure 1.1: CUDA Processing Flow

limitations that prevented precious graphics processors from being
legitimately useful for general-purpose computation." [2]

CUDA stands for Compute Unified Device Architecture, is a parallel
computing platform and programming model created by NVIDIA and imple-
mented by the Graphics Processing Units that they produce. Programmers
can now write code in C/C++ in order to accomplish general purpose tasks
without use API’s like OpenGl or DirectX.

Looking at the figure 1.1 we can see a simple scheme which explain how
it basically works, underlining the co-operation between CPU and GPU.

The process is divided in four phases:

1. The initial data are copied from the main memory (outside GPU) to
GPU’s memory, using CUDAmalloc() system call families.

2. The CPU instruct the GPU, preparing it to perform the desidered task,

12 CHAPTER 1. INTRODUCTION

launching the so-called CUDA Kernels, which contains code to execute
in every single core of the GPU.

3. Every CUDA Kernel execute its task.

4. The output is copied back to the main memory, ready to be visualized
or processed again.

This is the main pattern to perform tasks using CUDA.

1.1.3 Why CUDA

The modern GPU is a highly data-parallel processor. The GPU
features many lightweight closely-coupled thread processors that
run in parallel. While the performance of each thread processor
is modest, by effectively using many thread processors in parallel,
GPUs can deliver performance that substantially outpaces a CPU.
[1]

As we mentioned above, CUDA is a step ahead for computer technology,
it allows programmers to significantly extend their possibilities. Nowadays
we can easily program a GeForce GTX 560 Ti, using its 384 cores, at a very
reasonable price. It is now possible to build gpu-accelerated softwares in or-
der to significantly increase the overall performances. Another advantage is
the possibilty to make the CUDA cores "communicate", using a fast shared
memory regions. Such a CUDA architecture can be used to perform a wide
set of operations, like scientific (and engineering) computations, physics sim-
ulations (like PhysX or Bullet) and so on, but it can also be useful in fields
like cryptography, computational biology ecc..

We are discussing soon how CUDA technology affects an incredibly wide
range of fields.

1.1.4 Trade-Off

Unfortunately, as always in engineering fields, there are several limitations us-
ing CUDA technology. Firstly, the communication between CPU and GPU.
In fact we saw how (almost) every CUDA task begins and ends moving data
between these two hardware components, this could actually be a bottle-
neck for performances, due to system bus latency and their relatives "low"
bandwith. Programmers should be aware of this, limiting the data-transfer
between the two devices.

1.2. CONCRETE APPLICATIONS OF CUDA TECHNOLOGY 13

Latter, complexity. Taking advantage of parallelism requires to formulate a
different schematization of a given problem, therefore such a parallel formu-
lation could even shows worse performances than a serial one. We always
should remember to use CPU and GPU in a "complementary" way, avoiding,
as much as possible, exclusive approaches.

1.2 Concrete Applications of CUDA technol-
ogy

Here we have an example proposed by NVIDIA which shows the enormous
potential of parallel computing, and how CUDA technology is affecting our
modern society, not only in scientific fields

Medical Imaging
Since general-purpose parallel programming is thinked to overcome the com-
putation limitations of modern computers, we can easily see how CUDA
could solves many concrete problems. Here we have an example of medical
diagnosis system, TechniScan, which can be finally implemented thanks to
CUDA Architecture.

"TechniScan has developed a promising, three-dimensional, ultrasound imag-
ing method, but its solution had not been put into practice for a very simple
reason: computation limitations. [...] The introduction of NVIDIA’s first
GPU based on the CUDA Architecture along with its CUDA C programming
language provided a platform on wich TechniScan could convert the dreams of
its founders into reality. [...] Thanks to the computational horsepower of the
Tesla C1060, within 20 minutes the doctor can manipulate a highly detailed,
three-dimensional image of the woman’s breast." [2]

1.3 Example: Summing Vectors
Now, we will have an example of how CUDA works. Given two vectors we
will write code to perform sum between them using parallelization.

The basic idea is to separate the sum between single elements. So, according
to the Figure 1.2, we will have four CUDA Kernels:

1. Kernel A: will perform 1 + 8 = 9

2. Kernel B: will perform 3 + 3 = 6

14 CHAPTER 1. INTRODUCTION

Figure 1.2: Summing two vectors

3. Kernel C: will perform 8 + 1 = 9.

4. Kernel D: will perform 3 + 1 = 4

Code: "main" method - CPU code

1 #define N 4
2

3 int main()
4 {
5 int a[N], b[N], c[N]; //declare arrays
6 int *dev_a, *dev_b, *dev_c; //declare pointers to gpu-arrays
7

8 //Allocate on-gpu memory with cudaMalloc() for device arrays
9 HANDLE_ERROR(cudaMalloc((void**)&dev_a, N * sizeof(int)));

10 HANDLE_ERROR(cudaMalloc((void**)&dev_b, N * sizeof(int)));
11 HANDLE_ERROR(cudaMalloc((void**)&dev_c, N * sizeof(int)));
12

13 //Fill arrays
14 a[0] = {1, 3, 8, 3};
15 b[0] = {8, 3, 1, 1};
16

17 //Phase 1: copying data from CPU to GPU
18 HANDLE_ERROR(cudaMemcpy(dev_a, a, N * sizeof(int),
19 cudaMemcpyHostToDevice));
20 HANDLE_ERROR(cudaMemcpy(dev_b, b, N * sizeof(int),
21 cudaMemcpyHostToDevice));
22

23 //Phase 2: CPU instruct the GPU to perform tasks
24 add<<<N,1>>>(dev_a, dev_b, dev_c);

1.3. EXAMPLE: SUMMING VECTORS 15

25

26 //Phase 4: copying the results back to CPU memory
27 HANDLE_ERROR(cudaMemcpy(c, dev_c, N * sizeof(int),
28 cudaMemcpyDeviceToHost));
29

30 //Print results
31 for (int i = 0; i < N; i++)
32 {
33 printf("%d+%d␣=␣%d\n", a[i], b[i], c[i]);
34 }
35

36 cudaFree(dev_a);
37 cudaFree(dev_b);
38 cudaFree(dev_c);
39

40 return 0;
41 }

As we can see, code is clean and straightforward. We’ve implemented three
of the four phases we mentioned above. The only particularity are the triple
brackets on phase 2:

24 add<<<N,1>>>(dev_a, dev_b, dev_c);

We want to call "add" function on gpu with N (= 4) Kernels, passing
"dev_a", "dev_b" and "dev_c" as parameters. Now, talking about the
"1" inside the triple brackets: CUDA technology allows us to execute code
on parallel Kernels, but every Kernel, in turn, can execute multiple instances
of code using one or more Threads. In our case, one Thread per each Kernels
is enough.

N.B.: using a combination of Kernels and Threads we can talk about
"grids", where every cell is identified by a Kernel-Thread pair.

Now we can procede to phase 3: the "heart" of CUDA, the Kernel Code.

Code: Kernel Cuda - GPU code

1 //Phase 3: Execute CUDA Kernels
2 __global__ void add(int *a, int *b, int *c)
3 {
4 int tid = blockIdx.x;

16 CHAPTER 1. INTRODUCTION

5 if (tid < N)
6 c[tid] = a[tid] + b[tid];
7 }

With only two lines, we can perform parallel computation of a sum of
two vectors.

Firstly, we used the "__global__" qualifier in the method signature, it
specifies the visibility of the Kernel code. Using "__global__" we can call
the method "add" from CPU code.

The explanation of this instructions resides in the general idea of parallel
computation: we have to assign every single sum to a Kernel. So we would
to have, for instance:

Kernel 0 : c[0] = a[0] + b[0]
Kernel 1 : c[1] = a[1] + b[1]
Kernel 2 : c[2] = a[2] + b[2]

and so on. We can accomplish this using the built-in variable "blockIdx.x",
which returns an unique identifier for the Kernel which is performing that
specific task.

So this is the first line:

4 int tid = blockIdx.x;

Since we always would have a stable and bugs-free code, we control if
the variable "tid" is less than the "N" value. Of course, in this example, we
would not need to check this, but it is a good practice to never forget it as
our code starts to become more complicated.

5 if (tid < N)
6 c[tid] = a[tid] + b[tid];

The last line is simply our goal: put the result in the "c" vector.

Chapter 2

Thesis Argument

After this important introduction, which should us "guide" through CUDA
and parallel computation philosophy, I will introduce you to my thesis topic.

2.1 Introduction

2.1.1 Reference Example

Figure 2.1: Reference Example

I began developing my thesis starting from the "SimpleGL" example
provided by NVIDIA, which simply draws a sinusoidal 3D wave using CUDA.
This is one of several open-source examples included in the CUDA SDK,
officially released by NVIDIA.

17

18 CHAPTER 2. THESIS ARGUMENT

The figure 2.1 show the sinusoidal 3D pattern drawn by SimpleGL. I have
modified the original code without intervene on the rendering part, which is
written by NVIDIA using OpenGL libraries.

2.1.2 Tools Used

Programming Languages and IDE’s
All my project is developed using C++ Language and Visual Studio 2010.

Extern Libraries
In order to elaborate the audio stream I’ve used SndLib: http://www.mega-
nerd.com/libsndfile/.
The Fast Fourier Transform is computed with FFTW: http://www.fftw.org/index.html.

2.1.3 The Algorithm

The goal of my experimental project is to extend the said NVIDIA example,
drawing a dinamic three-dimensional image taking an audio stream as input,
calculating its Fast Fourier Transform. In this case, every CUDA Kernel
will draw a pixel on the screen, using the FFT data previously calculated.
The algorithm consists of three phases: Preliminary phase, CUDA phase and
OpenGL drawing phase.

Preliminary Phase:

1. Acquire stream data from the audio file.

2. Calculate initial DFT data.

CUDA Phase:

1. Copy DFT data from CPU memory to GPU memory.

2. Launch CUDA Kernels from CPU.

3. Execute Kernels.

4. Copy results back to CPU memory.

The OpenGL phase is already implemented by Nvidia.

After this last step, the loop will be restarted, until there will be no more
data to compute.

2.2. THE CODE 19

2.1.4 Code Organization

The project is composed of the following files:

• simpleGl.cpp: CPU Code which implements the Preliminary Phase and
the OpenGL drawing phase.

• rendercheck_gl.cpp: Code written by NVIDIA, for drawing purposes.

• simpleGL_kernel.cu: GPU Code which implements the CUDA phase.

2.2 The Code
Now, I will present the code, following the organization that we’ve mentioned
before.

2.2.1 Preliminary Phase

In order to accomplish the Preliminary Phase I have written two methods,
that I report on this document:

"init()" method: this is the initialization method, it verifies if the in-
put audio stream is legal, reads first data from it and initialize the fftw data
structures.

"next_data()" method: To compute the DFT, there are two possible
approaches: calculate it at the beginning or calculate a partition of it time
after time. I personally tested that the first approach is a bottle-neck for
performances, since it requires a significant startup time and a big amount
of memory. So I opted for the second method, to compute, step-by-step,
subsets of data ready to be processed.

Acquire stream data from the audio file

Using the sndlib library open a .wav file is straightforward:

1 static SNDFILE* fIn;
2 fIn = sf_open(pszInputFile, SFM_READ, &info_in);

So, "fIn" is a pointer to a SNDFILE object, which will contains the audio
data.

20 CHAPTER 2. THESIS ARGUMENT

Fast Fourier Transform

The purpose of this project is to draw a 3D image starting from an au-
dio stream frequency spectrum; in order to perform Fourier analysis we need
to use the Discrete Fourier Transform (DFT). Calculating the DFT from its
definition inevitably requires a O(n2) algorithm. Using a Fast Fourier Trans-
form (FFT) algorithm we can compute the DFT in only O(nlogn) operations;
with no doubts a significant improvement.

Here’s the generic definition of Discrete Fourier Transform:

"The discrete Fourier transform (DFT) converts a finite list of equally-spaced
samples of a function into the list of coefficients of a finite combination of
complex sinusoid, ordered by their frequencies, that has those same sample
values. It can be said to convert the sampled function from its original domain
(often time or position along a line) to the frequency domain." (Wikipedia)

Mathematically:

The sequence of N complex numbers x0, ..., xN−1 is trasformed into an N-
periodic sequence of complex numbers according to the DFT formula:

Xk =
N−1∑
n=0

xne
−i2πkn/N

Since each Xk is a complex number, we will extract its amplitude:

|Xk| =
√

Re(Xk)2 + Im(Xk)2

So, we would like to use these elements as inputs for the second phase. In
order to accomplish that, here I show the code for calculating the DFT, using
FFTW library:

First, we have to initialize all the data structures needed for FFTW:

1 snd_plan = fftw_plan_dft_r2c_1d(
2 nDftSamples,
3 fftw_in, fftw_out,
4 FFTW_ESTIMATE);

2.2. THE CODE 21

We’ve passed four parameters:

• nDftSamples: Number of samples.

• fftw_in: The input data, i.e., the audio data.

• fftw_out: Array for the output.

• FFTW_ESTIMATE: flag.

The next phase is to execute the "plan" we’ve initialized in the previous step:

1 fftw_execute(snd_plan);

N.B.: the code will compute a total of nDftsamples every time the next-
Data() method is called.

Once we have ready data to process, we can successfully pass to the sec-
ond phase.

2.2.2 CUDA Phase

Some pages before we’ve described the common pattern of a cooperation
between CPU and GPU, this project it is not an exception. This "GPU"
phase take as input the output produced in the previous phase. So, we will
have a "step by step" explanation of the algorithm with the relative code,
which will help us along to fully understand how the final output is generated.

First, I will introduce the two methods which I used to perform the CUDA
phase:

File: "simpleGL_kernel.cu"

CUDA Kernel

1 __global__ void kernel(float4* pos, unsigned int width, unsigned int height,
2 float time, fftw_complex* data)
3 {
4 unsigned int x = blockIdx.x*blockDim.x + threadIdx.x;
5 unsigned int y = blockIdx.y*blockDim.y + threadIdx.y;
6

7 //calculate u-v coordinates
8 float u = x / (float) width;

22 CHAPTER 2. THESIS ARGUMENT

9 float v = y / (float) height;
10

11 float w = imabs(data[(int)(u * 220)]) / 2.0;
12

13 u = u*2.0f - 1.0f;
14 v = v*2.0f - 1.0f;
15

16 //write output vertex
17 int position = y*width+x;
18 pos[position] = make_float4(u, w, v, 1.0f);
19 }

Kernel Launcher

1 extern "C" void launch_kernel(float4* pos, unsigned int mesh_width,
2 unsigned int mesh_height, float time, fftw_complex* data)
3 {
4 fftw_complex* cudaData;
5

6 cudaMalloc((void**)&cudaData, 220 * sizeof(fftw_complex));
7 cudaMemcpy(cudaData, data, 220 * sizeof(fftw_complex),
8 cudaMemcpyHostToDevice);
9

10 // execute the kernel
11 dim3 block(8, 8, 1);
12 dim3 grid(mesh_width / block.x, mesh_height / block.y, 1);
13

14 kernel<<< grid, block>>>(pos, mesh_width, mesh_height, time, cudaData);
15

16 cudaMemcpy(data, cudaData, 220 * sizeof(fftw_complex),
17 cudaMemcpyDeviceToHost);
18 }

The first method is our "core", the code executed by every CUDA Kernel
(more precisely, by every CUDA Thread), which will instruct the OpenGL
phase to correctly draw the pixels on the screen.
The second method purpose is to prepare data to be processed by the first
method, allocating memory on the GPU and instructing it to perform its
Kernels.

2.2. THE CODE 23

Both methods take as inputs the same parameters:

• float4* pos: the VBO (Vertex Buffer Object) array, which will collect
data to draw pixels on the screen (used by the OpenGL phase provided
by NVIDIA)

• unsigned int mesh_width & unsigned int mesh_height: mesh
dimensions.

• float time: current milliseconds past from the beginning (for debug
purposes).

• fftw_complex* data: pointer to DFT data computed in the prelim-
inary phase.

Now we can procede to explain, step by step, how these two method do their
work.

Step 1: Copy DFT data from CPU memory to GPU memory

4 fftw_complex* cudaData;
5

6 cudaMalloc((void**)&cudaData, 220 * sizeof(fftw_complex));
7 cudaMemcpy(cudaData, data, 220 * sizeof(fftw_complex),
8 cudaMemcpyHostToDevice);

The first step is to initialize a pointer to "fftw_complex" objects:

4 fftw_complex* cudaData;

Then we allocate memory on GPU using cudaMalloc() facility:

6 cudaMalloc((void**)&cudaData, 220 * sizeof(fftw_complex));

So we allocate enough memory to store 220 fftw_complex objects in the mem-
ory pointed by cudaData. We allocate 220 "blocks" because we only need to
store DFT data from a range of 0 Hz to 20KHz.

Then we finally copy data from data array (passed as parameter) to cud-
aData array using cudaMemcpy():

7 cudaMemcpy(cudaData, data, 220 * sizeof(fftw_complex),
8 cudaMemcpyHostToDevice);

Notice how the last parameters specify the copy direction, from Host (CPU
memory) to Device (GPU memory).

24 CHAPTER 2. THESIS ARGUMENT

Step 2: Launch CUDA Kernels from CPU

1 dim3 block(8, 8, 1);
2 dim3 grid(mesh_width / block.x, mesh_height / block.y, 1);
3 kernel<<< grid, block>>>(pos, mesh_width, mesh_height, time, cudaData);

Starting from the first line:

1 dim3 block(8, 8, 1);

As we said before, in this phase we create a virtual grid where every cell
is identified by a Kernel-Thread pair. In this case we instantiate a "dim3"
object (that we’ve called "block") passing 3 parameters: x, y, z. Since we
would like to create a bi-dimensional grid we set the z parameter to 1. In
this way we will have 8× 8 = 64 threads per blocks.

2 dim3 grid(mesh_width / block.x, mesh_height / block.y, 1);

Here we define the "grid" object, specifying its dimensions: we want our grid
to have (mesh_width/block.x)× (mesh_height/block.y) blocks. So, for in-
stance, if our image should be 512 pixels wide and 512 pixels high we would
have (512/8 = 64) × (512/8 = 64) blocks. We will have as much pixels as
threads.

3 kernel<<<grid, block>>>(pos, mesh_width, mesh_height, time, cudaData);

Now we simply launch the Kernel, passing the grid and block parameters
we’ve just defined.

Step 3: Execute Kernels
We can now examine the CUDA Kernel.

Here’s the first two lines:

4 unsigned int x = blockIdx.x*blockDim.x + threadIdx.x;
5 unsigned int y = blockIdx.y*blockDim.y + threadIdx.y;

Our objective is to write a single source code in order to perform parallel
computing, so we need to associate every vertex to its thread. In order to ac-
complish that we use these two lines, which instantiate two unique variables
x, y. Their uniqueness is guaranteed by the built-in blockDim.x, blockDim.y,
threadIdx.x, threadIdx.y variables. In fact it’s easy to notice how we use these

2.2. THE CODE 25

variables so that they identify every single cell of the grid we’ve defined be-
fore.

7 //calculate u-v coordinates
8 float u = x / (float) width;
9 float v = y / (float) height;

Once we have successfully calculated the two identifiers (x and y) we now
calculate the u and v variables, which represents the effective position of the
vertices in the final image. Since we need to specify three coordinates for
every vertices (we want to draw a 3D image) we should define another vari-
able, which we will call w variable. It will depends by the DFT data we’ve
previously calculated:

11 float w = imabs(data[(int)(u * 220)]) / COMPRESSION;

Figure 2.2: Reference System of the output

26 CHAPTER 2. THESIS ARGUMENT

We have introduced mathematically the Discrete Fourier Transform some
paragraphs before, in particular we said that every Xn is a complex number.
So the first thing we want to do is to extract the magnitude of every Xn

(using imabs method) and use it to calculate the w variable. It is necessary
to make some clarifications about the parameter passed to imabs method.
The final image will have the same reference system of the Figure 2.2, so the
u variable will identify the Frequencies coordinate, the v variable will iden-
tify the Time coordinate and the w variable will identify the magnitude
(Energy) coordinate. According to this we will use the u variable to index
the right data associated to the current thread, after multiplying it per 220
(the range is between 0 and 220 KHz).

13 u = u*2.0f - 1.0f;
14 v = v*2.0f - 1.0f;

This is a simple correction in order to draw a more compact image (inherited
by the original example).

17 int position = y*width + x;
18 pos[position] = make_float4(u, w, v, 1.0f);

The last two lines simply write the calculated vertex into the VBO (the "pos"
vector) at the index specified by "position" variable.
N.B.: the "pos" variable is a pointer to an array which resides in the GPU
memory! We will copy the results back to the CPU in the next step.

Step 4: Copy results back to CPU memory
We arrived to the last step of our project: copying back to CPU the com-
puted vertices.
So, returning to the "launch_kernel" method we have:

16 cudaMemcpy(data, cudaData, 220 * sizeof(fftw_complex),
17 cudaMemcpyDeviceToHost);

As we can see this line is similar to the one we’ve used in the step 1; the
difference is the copy direction, witnessed by the last parameter: "cudaMem-
cpyDeviceToHost", which confirm that we are copying data from Device
(GPU memory) to Host (CPU memory).

2.3. DEMONSTRATION 27

2.3 Demonstration

In this section I will provide some examples, showing the inputs characteris-
tics, its frequencies spectrum and finally the 3D image produced. I will use
as inputs simple audio tests, so it will be possible to easily "predict" the final
output behaviour.

2.3.1 Low Frequencies Sample

Figure 2.3: Low-Frequencies Audio Stream

The Figure 2.3 represents the frequencies spectrum of this first example,
which is an audio stream characterized by low frequencies. As we can see, it
starts with a magnitude equals to zero in t0 = 0, grow almost constantly
reaching its maximum magnitude value in t2 = 1 and constantly returns to
zero.

28 CHAPTER 2. THESIS ARGUMENT

Figure 2.4: Low-Frequencies Audio Stream: CUDA Computation

After passing the sample as inputs in my project, in Figure 2.4 we have
a screenshot from the final computation in a certain instant of time. We
can see how the high frequencies are close to zero while the low frequencies
magnitude is very high.

2.3.2 Constant Frequencies Spectrum Sample

The second sample is a 500 Hz constant tone. As we can see in Figure 2.5
there is a peak in correspondence of 550 Hz.

2.3. DEMONSTRATION 29

Figure 2.5: 500 Hz constant sound

30 CHAPTER 2. THESIS ARGUMENT

Figure 2.6: Constant Frequencies Spectrum Sample: CUDA Computation

The Figure 2.4 shows the output image generated by our program. In
correspondence of 500 Hz there is the expected peak. Moving away from this
point we notice how the magnitude progressively approaches to zero.

2.3. DEMONSTRATION 31

2.3.3 Siren Audio Sample

Figure 2.7: Oscillating Siren

This last sample shows the frequencies spectrum of an ambulance siren. The
Figure 2.7 shows how the signal oscillates between two frequencies.

32 CHAPTER 2. THESIS ARGUMENT

Figure 2.8: Siren Audio Sample: First Oscillation

Figure 2.9: Siren Audio Sample: Second Oscillation

The Figure 2.8 shows the first frequency while the Figure 2.9 shows the
second frequency. The dynamic image generated will oscillate between this
two frequencies.

Chapter 3

Practical Applications

Such a project like this can easily find many kind of concrete applications.
Now, I will show a practical example.

3.1 Stage Lighting System

Figure 3.1: Complex Stage Lighting System

The sound engineering has made many steps ahead in the last years,
helping artists and musicians to greatly increase the quality of their perfor-
mances. One of the most important element which make the difference on
a stage, are lights. In a concert contest, it is a common practice to make
lights follow the music rhythm. In order to accomplish this, a technician will
take care of it using an appropriate controller. What about if we design an
automated lighting system?
The idea is to convert my application in order to accomplish this task using
CUDA technology.

33

34 CHAPTER 3. PRACTICAL APPLICATIONS

The Figure 3.1 shows an example of a complex stage lighting system; it
is easy to understand how it could be difficult to manage such a system like
this. Our purpose is to design a software which will control the hardware,
that is, the lights. Recording the audio stream from the live performance we
would like to activate the lights in such a way they follow the music rhythm
and intensity helping along to make the show more engaging.

Following the same idea we have used before, we will design a Prelimi-
nary Phase and a Cuda Phase.

Figure 3.2: Automated Lighting System Scheme

Preliminary Phase
While musicians are playing, the audio stream that they produce, properly
recorded with microphones and digital recorders, will be the input of the pre-
liminary phase. As we did before, the preliminary phase simply consists of
two steps: acquire audio data and calculate the Discrete Fourier Transform
using the FFT algorithm.
Since the algorithm complexity is O(nlogn) and we sample every time small
"bursts" of DFT data, we can assume that this phase will be executed very
fast. In this way the resultant latency will be unnoticeable.

CUDA Phase
Instead of drawing a 3D image now we should pilot all the lighting system
using CUDA technology.
The idea behind is to assign a set of lights to a set of CUDA threads.
To accomplish this we can assume that every lights set (which should con-
tains one or more lights) have their own associated memory, where they can

3.1. STAGE LIGHTING SYSTEM 35

read instructions (such as movement directions, light color, intensity, inter-
mittence ecc..) which are given by the relative CUDA thread.
Each thread will instruct its associated lights set with a custom algorithm
which will take as input the DFT computed in the preliminary phase.

Thanks to the powerful CUDA technology write such a code is straight-
forward and it guarantees a high-performance computation only using a per-
sonal computer equipped with an NVIDIA GPU. The overall effect given by
the lighting system is only up to our creativity.

36 CHAPTER 3. PRACTICAL APPLICATIONS

Bibliography

[1] Dan Geiger Anjul Patney Mark Silberstein, Assaf Schuster and John D.
Owens. Efficient computation of sum-products on gpus through software-
managed cache.

[2] Jason Sanders and Jack Dongarra. CUDA By Example. Addison Wesley,
2010.

37

